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Note 

Trace Orthogonal Hermitian Basis Matrices 
of Arbitrary Dimension 

1. INTRODUCTION 

An arbitrary N x N matrix M can be expressed as a linear combination of the 
N2 basis matrices crLN,“’ 

(1.1) 

where M, are (scalar) expansion coefficients (Fano [3], Pease [6]). If the OF’ are 
trace orthonormal, i.e., 

tr ~(~)a(~) = 6 n m nm (1.2) 

then the expansion coefficients are given by 

M, = tr M=(,N) . 0.3) 

It is also common practice to require that the basis matrices be hermitian; so that 
if M be hermitian then the expansion coefficients M, are real. 

Although the usefulness of these basis matrices is unquestioned, the explicit 
representation of the ~5:~’ is only known for N = 2, 3. The purpose of the present 
paper is to present an algorithm which permits the direct construction of these basis 
matrices for any N. 

2. OFF-DIAGONAL BASIS MATRICES 

We will find it useful to employ a somewhat more elaborate notation involving 
two subscripts and rewrite Eq. (1.1) as 

M = 2 t Ma,&). (2.1) 
a=1 64 
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The trace orthogonality and hermitian conditions become 

(2.2) 

(2.3) 

The set of N(N - I)/2 matrices a$’ with (Y < p having elements 

[QYlil: = t(Lsf3k + sd!Tj>~ j, k = l,..., N (2.4) 

are hermitian since they are real symmetric. They satisfy the trace orthogonality 
condition, Eq. (2.2). 

Another set of N(N - I)/2 basis matrices a$’ with a! > /? is 

[=:;)ljk = (i/2)(6,,8,, - S,,S,,); j, k = l,..., N. (2.5) 

These matrices are also trace orthogonal as well as hermitian. 
It is easily demonstrated that each matrix corresponding to Eq. (2.4) is trace 

orthogonal to each matrix corresponding to Eq. (2.5). Finally, both sets of matrices 
are trace orthogonal to any diagonal matrix. Both sets of matrices possess zero 
diagonals and have only two nonzero elements. 

To complete the set of hermitian basis matrices, we have to find the N diagonal 
matrices that are trace orthogonal subject to the requirement that one of these 
matrices be the unit matrix (suitably normalized by N-li2). However, this problem 
is precisely the same as that of finding (N - 1) vectors that are orthonormal to a 
vector having every element given by N-lJ2. 

There are several ways that one could solve the problem of determining a finite 
set of orthonormal vectors of which one vector corresponds to the diagonal of the 
unit matrix. This suggests the use of the Gram-Schmidt orthogonality procedure 
(Hildebrand [4]). However, to employ it one requires a set of linearly independent 
vectors of which one vector is the above mentioned unit vector. The approach via 
this method is tedious and time consuming. However, we have discovered a more 
direct method of construction which circumvents the iterative aspects of Gram- 
Schmidt. Our procedure is described in the next two sections. 

3. DIAGONAL BASIS MATRICES 

Before discussing the construction of the diagonal matrices, we present some 
ancillary material. 
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Suppose we have constructed the N12 basis matrices for the N1 x N1 case and the 
Nzz basis matrices for the Nz x N, case, then the set of (N,N$ square matrices of 
dimension N,N, obtained by calculating the direct products of these two sets of 
matrices also satisfy Eq. (2.2). The proof of the trace orthogonality condition is: 

(3.1) 

where we have employed standard properties of direct matrix products (Wigner 
[5]). If in addition the two sets are hermitian, then so are the direct products. 
Consequently the only values of N we need consider are N = 1, 2, 3, 5, 7, ll,..., 
the prime numbers. 

With these facts in mind, let p1 = 1, pz = 2, p3 = 3, p4 = 5, p5 = 7, Pe = ll,... 
be the sequence of prime numbers. Suppose that the basis vectors of dimension 
pnz and all lesser dimensions pm-1 , prnez ,..., p1 be known. Then it follows that the 
basis vectors of dimension d, = pm+l - pm are also known since all the factors of 
the difference between two primes of contiguous order are primes of lower order 
than the inferior prime; (Davenport [2]). 

Let the known basis set of vectors for spaces of dimensions pm and d,,& be given by 

144 Pnl)>Y j = 1, L., Pm (3.2) 

{9j(4&, j=l,2 d ,..., 772 . (3.3) 

To obtain the next prime-ordered basis set (i.e., N = pm+J we will need the null 
vectors +,Jp,) and +,,(d,,) in the p,-dimensional and d,-dimensional spaces, 
respectively. For notational convenience, we assign +,,(p,) and 9&d,) to the 
vectors having every element given by p;:12 and d;“*, since we have already 
established that the unit matrix is one of the matrices in every trace orthogonal 
basis set. 

The orthonormal basis set of vectors in the p,+,-dimensional space now can be 
constructed by the following recursion relations: 

~J~+~(P~+~) = 4dpm) 0 +d&j, j = 2,..., pm (3.4) 

+m+k~m+d = 9d~m) 0 ~iM,J, j = 2,..., d,,, (3.5) 
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and the indicial equations 
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91(Pm+1) = (Pln/Pm+1)1’2 44PnJ 0 (47JPm+l)1’2 +,M?J (3.6) 

92(Pm+J = G4n/Pm+*Y2 4JdPm) 0 (-*)(Pm/Pm+l)1’2 9lMn) (3.7) 

where @ denotes the direct SUI~Z. Note that the first indicial equation yields the 
vector corresponding to the normalized unit matrix as we will verify by direct 
manipulation. From a heuristic viewpoint, we are enlarging the space of allowable 
vectors by combining the lower dimension vectors via a direct sum operation, so 
that vectors of dimensions IV1 and IV2 yield vectors of dimension (IV1 + IV,). 

To use this algorithm, we need only know the vectors for m = 1 (i.e., p1 = I), 
since everything can be generated inductively from them. They are 

4J,,w = 0, 441) = 1. (3.8) 

The vector +r( 1) is the basis set for the one-dimensional space (i.e., m = 1, p1 = 1), 
9,,(l) is the above-mentioned null vector. 

To compute the next order, that isp, = 2, we use the recursion relations in which 
dl = p2 - p1 = 1. Equation (3.4) yields 

G,(2) = (;J2 ( 1 1 @ (i)l’. 1 1 1 = -& I 
the normalized unit vector. Equation (3.5) yields 

1 
1 I (3.9) 

G,(2) = (y2 I 1 I 0 (-l)(;)1’2 I 1 I = -$I -; 1 . (3.10) 

Consequently, the diagonal basis matrices for N = 2 are 

110 
I I 

1 1 0 
%l=2/2 o * , =22=73 o-l . 

I I 

The off-diagonal matrices corresponding to Eqs. (2.4) and (2.5) are 

101 
Q -- I 

1 O-i 
12-1/2 1 0 I ’ =21 = 1/2 I i o I * 

(3.11) 

(3.12) 

These four basic matrices are proportional to the well-known Pauli spin matrices. 
The numerical factor arises from our choice of normalization, Eq. (2.2). 

581/21/3-6 



330 FOX AND BARAKAT 

The 3 x 3 basis matrices follow from m = 2, p3 = 3, and d2 = p3 -pa = 1. 
From the indicial equations we calculate 

(3.13) 

(L,(3) = (;)“” (;)l, 1 ; / @ (-l)(;)1’2 1 1 ) = & (3.14) 

The remaining vector &(3) is obtained from the first recursion relation, Eq. (3.4) 

Consequently the three diagonal matrices are: 

The six off-diagonal matrices can be obtained from Eqs. (2.4) and (2.5); we omit 
their explicit representation. These nine basis matrices are proportional to the 
well-known 3 x 3hj matrices arising in elementary particle physics (Carruthers 
Cl]). The numerical factor again arises from our normalization. 

To obtain the 5 x 5 diagonal basis matrices, we use the recursion relations with 
m = 3, p4 = 5, d3 = p4 - p3 = 2. The reader can verify that Eq. 3.4 yields two 
matrices 

10 000 
01 000 

a23 = -& 0 o-2 0 0 
00 000 
00 000 

while Eq. 3.5 withj = 2 yields 

all = & 

3 tT - 44 -5 

0000 0 
0000 0 
0000 0 
0001 0 
0 0 0 O-l 

10000 
0-1000 
0 0000 (3.17) 
0 0000 
0 0000 

(3.18) 
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The two indicial equations yield 

Ull = -& 

The diagonal e 

1 0 0 0 0 200 0 0 
0 1 0 0 0 020 0 0 
00100, 422 - & --002 0 0 
0 0 0 0 0 000-3 0 
0 0 0 0 1 000 o-3 

:ments of the diagonal basis matrices for N = 7 are Ii Sl :ed below: 
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. (3.19) 

(3.20) 

To derive matrices for larger prime numbers one simply applies the same proce- 
dure. We note that the entire algorithm is ideally suited for machine computation. 
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